22 research outputs found

    Multi-Modal Self-Supervised Learning for Recommendation

    Full text link
    The online emergence of multi-modal sharing platforms (eg, TikTok, Youtube) is powering personalized recommender systems to incorporate various modalities (eg, visual, textual and acoustic) into the latent user representations. While existing works on multi-modal recommendation exploit multimedia content features in enhancing item embeddings, their model representation capability is limited by heavy label reliance and weak robustness on sparse user behavior data. Inspired by the recent progress of self-supervised learning in alleviating label scarcity issue, we explore deriving self-supervision signals with effectively learning of modality-aware user preference and cross-modal dependencies. To this end, we propose a new Multi-Modal Self-Supervised Learning (MMSSL) method which tackles two key challenges. Specifically, to characterize the inter-dependency between the user-item collaborative view and item multi-modal semantic view, we design a modality-aware interactive structure learning paradigm via adversarial perturbations for data augmentation. In addition, to capture the effects that user's modality-aware interaction pattern would interweave with each other, a cross-modal contrastive learning approach is introduced to jointly preserve the inter-modal semantic commonality and user preference diversity. Experiments on real-world datasets verify the superiority of our method in offering great potential for multimedia recommendation over various state-of-the-art baselines. The implementation is released at: https://github.com/HKUDS/MMSSL.Comment: This paper has been published as a full paper at WWW 202

    Let Graph be the Go Board: Gradient-free Node Injection Attack for Graph Neural Networks via Reinforcement Learning

    Full text link
    Graph Neural Networks (GNNs) have drawn significant attentions over the years and been broadly applied to essential applications requiring solid robustness or vigorous security standards, such as product recommendation and user behavior modeling. Under these scenarios, exploiting GNN's vulnerabilities and further downgrading its performance become extremely incentive for adversaries. Previous attackers mainly focus on structural perturbations or node injections to the existing graphs, guided by gradients from the surrogate models. Although they deliver promising results, several limitations still exist. For the structural perturbation attack, to launch a proposed attack, adversaries need to manipulate the existing graph topology, which is impractical in most circumstances. Whereas for the node injection attack, though being more practical, current approaches require training surrogate models to simulate a white-box setting, which results in significant performance downgrade when the surrogate architecture diverges from the actual victim model. To bridge these gaps, in this paper, we study the problem of black-box node injection attack, without training a potentially misleading surrogate model. Specifically, we model the node injection attack as a Markov decision process and propose Gradient-free Graph Advantage Actor Critic, namely G2A2C, a reinforcement learning framework in the fashion of advantage actor critic. By directly querying the victim model, G2A2C learns to inject highly malicious nodes with extremely limited attacking budgets, while maintaining a similar node feature distribution. Through our comprehensive experiments over eight acknowledged benchmark datasets with different characteristics, we demonstrate the superior performance of our proposed G2A2C over the existing state-of-the-art attackers. Source code is publicly available at: https://github.com/jumxglhf/G2A2C}.Comment: AAAI 2023. v2: update acknowledgement section. arXiv admin note: substantial text overlap with arXiv:2202.0938

    Boosting Graph Neural Networks via Adaptive Knowledge Distillation

    Full text link
    Graph neural networks (GNNs) have shown remarkable performance on diverse graph mining tasks. Although different GNNs can be unified as the same message passing framework, they learn complementary knowledge from the same graph. Knowledge distillation (KD) is developed to combine the diverse knowledge from multiple models. It transfers knowledge from high-capacity teachers to a lightweight student. However, to avoid oversmoothing, GNNs are often shallow, which deviates from the setting of KD. In this context, we revisit KD by separating its benefits from model compression and emphasizing its power of transferring knowledge. To this end, we need to tackle two challenges: how to transfer knowledge from compact teachers to a student with the same capacity; and, how to exploit student GNN's own strength to learn knowledge. In this paper, we propose a novel adaptive KD framework, called BGNN, which sequentially transfers knowledge from multiple GNNs into a student GNN. We also introduce an adaptive temperature module and a weight boosting module. These modules guide the student to the appropriate knowledge for effective learning. Extensive experiments have demonstrated the effectiveness of BGNN. In particular, we achieve up to 3.05% improvement for node classification and 6.35% improvement for graph classification over vanilla GNNs

    Graph Few-shot Learning via Knowledge Transfer

    Full text link
    Towards the challenging problem of semi-supervised node classification, there have been extensive studies. As a frontier, Graph Neural Networks (GNNs) have aroused great interest recently, which update the representation of each node by aggregating information of its neighbors. However, most GNNs have shallow layers with a limited receptive field and may not achieve satisfactory performance especially when the number of labeled nodes is quite small. To address this challenge, we innovatively propose a graph few-shot learning (GFL) algorithm that incorporates prior knowledge learned from auxiliary graphs to improve classification accuracy on the target graph. Specifically, a transferable metric space characterized by a node embedding and a graph-specific prototype embedding function is shared between auxiliary graphs and the target, facilitating the transfer of structural knowledge. Extensive experiments and ablation studies on four real-world graph datasets demonstrate the effectiveness of our proposed model.Comment: Full paper (with Appendix) of AAAI 202

    Grape: Knowledge Graph Enhanced Passage Reader for Open-domain Question Answering

    Full text link
    A common thread of open-domain question answering (QA) models employs a retriever-reader pipeline that first retrieves a handful of relevant passages from Wikipedia and then peruses the passages to produce an answer. However, even state-of-the-art readers fail to capture the complex relationships between entities appearing in questions and retrieved passages, leading to answers that contradict the facts. In light of this, we propose a novel knowledge Graph enhanced passage reader, namely Grape, to improve the reader performance for open-domain QA. Specifically, for each pair of question and retrieved passage, we first construct a localized bipartite graph, attributed to entity embeddings extracted from the intermediate layer of the reader model. Then, a graph neural network learns relational knowledge while fusing graph and contextual representations into the hidden states of the reader model. Experiments on three open-domain QA benchmarks show Grape can improve the state-of-the-art performance by up to 2.2 exact match score with a negligible overhead increase, with the same retriever and retrieved passages. Our code is publicly available at https://github.com/jumxglhf/GRAPE.Comment: Findings of EMNLP202

    Few-Shot Knowledge Graph Completion

    Full text link
    Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art

    Graph-based Molecular Representation Learning

    Full text link
    Molecular representation learning (MRL) is a key step to build the connection between machine learning and chemical science. In particular, it encodes molecules as numerical vectors preserving the molecular structures and features, on top of which the downstream tasks (e.g., property prediction) can be performed. Recently, MRL has achieved considerable progress, especially in methods based on deep molecular graph learning. In this survey, we systematically review these graph-based molecular representation techniques, especially the methods incorporating chemical domain knowledge. Specifically, we first introduce the features of 2D and 3D molecular graphs. Then we summarize and categorize MRL methods into three groups based on their input. Furthermore, we discuss some typical chemical applications supported by MRL. To facilitate studies in this fast-developing area, we also list the benchmarks and commonly used datasets in the paper. Finally, we share our thoughts on future research directions
    corecore